Megavoltage cone beam computed tomography: Commissioning and evaluation of patient dose
نویسندگان
چکیده
The improvement in conformal radiotherapy techniques enables us to achieve steep dose gradients around the target which allows the delivery of higher doses to a tumor volume while maintaining the sparing of surrounding normal tissue. One of the reasons for this improvement was the implementation of intensity-modulated radio therapy (IMRT) by using linear accelerators fitted with multi-leaf collimator (MLC), Tomo therapy and Rapid arc. In this situation, verification of patient set-up and evaluation of internal organ motion just prior to radiation delivery become important. To this end, several volumetric image-guided techniques have been developed for patient localization, such as Siemens OPTIVUE/MVCB and MVision megavoltage cone beam CT (MV-CBCT) system. Quality assurance for MV-CBCT is important to insure that the performance of the Electronic portal image device (EPID) and MV-CBCT is suitable for the required treatment accuracy. In this work, the commissioning and clinical implementation of the OPTIVUE/MVCB system was presented. The geometry and gain calibration procedures for the system were described. The image quality characteristics of the OPTIVUE/MVCB system were measured and assessed qualitatively and quantitatively, including the image noise and uniformity, low-contrast resolution, and spatial resolution. The image reconstruction and registration software were evaluated. Dose at isocenter from CBCT and the EPID were evaluated using ionization chamber and thermo-luminescent dosimeters; then compared with that calculated by the treatment planning system (TPS- XiO 4.4). The results showed that there are no offsets greater than 1 mm in the flat panel alignment in the lateral and longitudinal direction over 18 months of the study. The image quality tests showed that the image noise and uniformity were within the acceptable range, and that a 2 cm large object with 1% electron density contrast can be detected with the OPTIVUE/MVCB system with 5 monitor units (MU) protocol. The registration software was accurate within 2 mm in the anterior-posterior, left-right, and superior-inferior directions. The additional dose to the patient from MV-CBCT study set with 5 MU at the isocenter of the treatment plan was 5 cGy. For Electronic portal image device (EPID) verification using two orthogonal images with 2 MU per image the additional dose to the patient was 3.8 cGy. These measured dose values were matched with that calculated by the TPS-XiO, where the calculated doses were 5.2 cGy and 3.9 cGy for MVCT and EPID respectively.
منابع مشابه
Clinical helical tomotherapy commissioning dosimetry.
Helical tomotherapy presented many unique dosimetric challenges and solutions during the initial commissioning process, and some of them are presented. The dose calculation algorithm is convolution/superposition based. This requires that the energy fluence spectrum and magnitude be quantified. The methodology for doing so is described. Aspects of the energy fluence characterization that are uni...
متن کاملArtifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملCommissioning experience with cone‐beam computed tomography for image‐guided radiation therapy
This paper reports on the commissioning of an Elekta cone-beam computed tomography (CT) system at one of the first U.S. sites to install a "regular," off-the-shelf Elekta Synergy (Elekta, Stockholm, Sweden) accelerator system. We present the quality assurance (QA) procedure as a guide for other users. The commissioning had six elements: (1) system safety, (2) geometric accuracy (agreement of me...
متن کاملمقایسه دقت توموگرافی سهبعدی با اشعه مخروطی با توموگرافی کامپیوتری مرسوم در تشخیص بیماریهای سینوس پارانازال
Background: Paranasal sinus disease is one of the most common problems of patients that refer to ENT centers. Adding to clinical examination imaging plays an important role in diagnosis and treatment. Also the imaging of paranasal sinuses is necessary before surgery. Although computed tomography is the modality of choice for these areas, it has some disadvantages which the most important one is...
متن کاملMega Voltage Cone Beam Computed Tomography (MV- CBCT) using a Standard Medical Linear Accelerator and EPID: A feasibility study.
Introduction: The success of radiotherapy cancer treatment delivery depends on the accuracy of patient positioning for each treatment session. A number of kilovoltage x-ray volumetric imaging modalities with an additional source and detector have been developed to allow patient set-up verification based on the internal anatomy, but a significant portion of medical linacs are on...
متن کاملDosimetry of Critical Organs in Maxillofacial Imaging with Cone-beam Computed Tomography
Background: While the benefits of cone-beam computed tomography (CBCT) are well known in maxillofacial imaging, the use of this modality is not risk-free.Objective: The aim of this study was to evaluate the exposure doses received by patients during maxillofacial imaging with CBCT.Methods: Entrance surface dose (ESD) was measured by using thermoluminescent dosimeters (TLDs) attached to the eyes...
متن کامل